TRANSDERMAL PATCHES: UPDATED REVIEW AS A NOVEL DRUG DELIVERY SYSTEM
Iasht Kamal Vachhal, Kapil Kumar, Aparna Joshi, Vaishali Rajput
Division of Pharmaceutics, Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India

Abstract
Transdermal patches are a non-invasive method of drug administration. It is an adhesive patch designed to deliver a specific dose of medication through the skin and into the bloodstream throughout the body. Transdermal drug delivery has several advantages over other routes of administration, for instance, it is less invasive, patient-friendly, and has the ability to bypass first-pass metabolism and the destructive acidic environment of the stomach that occurs upon the oral ingestion of drugs. Further offering a prolonged period of regulated medication release. The preparation procedures for various transdermal patch types, including membrane matrix, drug-in-adhesive, and micro reservoir patches, are covered in this review article. The various transdermal dosage form evaluation techniques have also been studied.

Keywords: Transdermal patch, matrix patches, reservoir type, membrane matrix, drug-in-adhesive patches.

Introduction
To administer a specific amount of medication through the skin and into the bloodstream, a transdermal patch is employed. The FDA initially approved transdermal patch products in 1981. Drugs given in standard dosage forms frequently cause wide changes in plasma drug concentrations, which might result in unfavourable toxicity or ineffectiveness. Compared to conventional injection and oral procedures, TDDS has many benefits [1]. It lessens the burden that taking medication orally frequently places on the liver and digestive system. The idea of a regulated drug delivery system or therapeutic system was developed as a result of these factors, as well as additional factors including recurrent dosing and unexpected absorption. It is practical, particularly for patches that only need to be applied once each week. Such a simple dosing regimen aids in patient adherence to drug therapy [2].

Advantages: There are many advantages associated with Transdermal drug delivery systems [3].
- It is quite helpful for people who are queasy or unconscious.
- Because this distribution route avoids direct effects on the stomach and intestine, medications that induce gastrointestinal disturbance may be suitable candidates.
- Bypassing hepatic and pre-systemic metabolism, the medicines' bioavailability is increased.
- IV therapy's risks and drawbacks are avoided. Less frequent doses and actions that last longer and with more predictability.
- Transdermal drug administration is ideal for medications that need relatively constant plasma levels [2].

Disadvantages [4,5]
- local irritation at the application location is a possibility.
- The medication, the adhesive, or other excipients in the formulation of the patch can all result in erythema, irritation, and local edema.
- could result in allergic reactions.
- A molecular weight of 500 Da or less is required.
- A log P (octanol/water) between 1 and 3 is necessary for permeate to cross SC and the
underlying aqueous layers due to the sufficient aqueous and lipid solubility [2].

PHYSIOLOGY OF THE SKIN
A typical adult's skin has a surface area of around 2 m², and it gets about one-third of the blood that circulates through the body. The uppermost layer of skin, the epidermis, has four morphologically distinct regions: the basal layer, the spiny layer, the stratum granulosum, and the uppermost stratum corneum. The epidermis is made up of highly cornified (dead) cells that are continuously encased in a matrix of lipid membranous sheets. Ceramides, cholesterol, and free fatty acids make up the special composition of these extracellular membranes. Every square centimetre of human skin is known to have between 200 and 250 sweat ducts and 10 to 70 hair follicles on average. It is one of the human body's organs that is easiest to access6,7.

Figure 1: Structure of skin.

Drugs can penetrate and pass through the skin in a number of ways when administered to the skin's surface. Drugs can enter the body either transdermally (through the stratum corneum) or transappendageally (via the appendages). There are two distinct ways to penetrate the stratum corneum: (1) through the corneocytes and lipid lamellae alternately (transcellular route); and (2) over the tortuous track between the lipid lamellae (intercellular route)8.

It is generally acknowledged that the intercellular pathway is the most common way to penetrate the stratum corneum. The heavily cross-linked cornified membrane covering the keratinocytes is mostly to blame for this. Water and other tiny hydrophilic molecules cannot, however, totally be eliminated from transcellular transport [9]. The eccrine sweat gland duct or the follicular duct are both included in the appendage route or shunt route. While the follicular duct contains mostly lipophilic material, the eccrine sweat glands are predominantly hydrophilic. Sebum that is excreted into the follicular duct entrance is mostly to blame for this. It is widely acknowledged that intact stratum corneum serves as the primary conduit for passive skin permeation because of its enormous surface area10.

DESIGN OF TRANSDERMAL DELIVERY SYSTEM [11,12]

1. Matrix or Monolithic: The drug is bound to the inert polymer matrix, which also regulates the drug's release from the apparatus.

2. Reservoir or Membrane: The release of drugs is not regulated by the polymer matrix. The rate-limiting barrier for drug release from the device is instead provided by a rate-controlling membrane that is present between the drug matrix and the sticky layer [9].

3. The main components to a transdermal patch are:

4. Polymer matrix- backbone of TDDS, which regulates the drug’s release. Polymers should not degrade while stored, should not be hazardous, and should not be expensive. They should also not be chemically reactive. A polymer must meet the following requirements in order to be employed in a transdermal system. The following polymers may be suitable for transdermal devices:

7. Drug: The transdermal route is an extremely attractive option for the drugs with appropriate pharmacology and physical chemistry. The following are some of the desirable properties of a drug for Transdermal delivery. Transdermal patches offer much to drugs which undergo extensive first pass metabolism, drugs with narrow therapeutic window, or drugs with short half life, eg fenatyl, nitroglycerine etc [13].

8. Permeation enhancers- Drug penetration enhancers interact with the proteins or lipids that make up the structural elements of the stratum corneum to increase its permeability, allowing for higher therapeutic levels of drug absorption.

9. The partial leaching of the epidermal lipids by the chemical enhancers, which improves the skin conditions for wetting and for transdermal and transfollicular penetration, is thought to be the cause of the improvement in oil-soluble medication absorption.

10. The improved transdermal permeability of water-soluble medicines may be caused by the miscibility and solution characteristics of the enhancers utilised.

11. Pharmaceutical researchers have worked very hard on transdermal permeation experiments employing various drug moieties as enhancers [14].
CONDITIONS IN WHICH TRANSDERMAL PATCHES ARE USED:
Transdermal patch is used when:
When the patient has intolerable side effects (including constipation) and who is unable to take oral medication (dysphagia) and is requesting an alternative method of drug delivery.
Where the pain control might be improved by reliable administration. This might be useful in patients with cognitive impairment or those who for other reasons are not able to self-medicate with their analgesia.

CONDITIONS IN WHICH TRANSDERMAL PATCHES ARE NOT USED:
The use of transdermal patch is not suitable when:
1. Cure for acute pain is required.
2. Where rapid dose titration is required.
3. Where requirement of dose is equal to or less than 30 mg/24 hrs.

PREPARATION OF TRANSDERMAL PATCHES- Several processes can be used to prepare transdermal medication delivery patches.

1. Mercury Substrate Method: In this procedure, plasticizer and the necessary amount of medication are dissolved in a predefined amount of polymer solution. The aforementioned solution should be agitated for a while to create a uniform dispersion. It should then be set aside until all air bubbles have been eliminated before being poured into a glass ring that will be placed over the mercury surface in a glass petri dish. An inverted funnel is positioned above the petri dish to control the solvent’s rate of evaporation. The films that have dried out must be kept in a desiccator [15-18].

2. Circular Teflon Mould Method: Solutions with different ratios of polymers are utilised in an organic solvent. Half as much of the same organic solvent is used to dissolve the calculated amount of medication. Addition of plasticizer to the drug polymer solution. Stirring the entire mixture before pouring it into a teflon mould is required. Furthermore, the rate of solvent vapourisation was controlled by setting an upside-down glass funnel on a teflon mould. For 24 hours, the solvent is allowed to evaporate. The films that have dried up must be kept in a desiccators 19-21.

3. Glass Substrate Method: After allowing the polymeric solutions to expand, the necessary amount of plasticizer and drug solution is added, and 10 minutes are spent stirring. It is then poured into a clean, dry anumbra petriplate after being set aside for a while to release any trapped air. By inverting a glass funnel over the petriplate, the rate of solvent evaporation can be adjusted. The dry films are removed from over night and kept in a desiccators [22].

4. By Using IPM Membranes Method: This method involves dispersing the medicine over a period of 12 hours in a magnetic stirrer in a solution of water and propylene glycol containing carbomer 940 polymers. Triethanolamine is to be added in order to neutralise the dispersion and make it viscous. If the drug’s solubility in aqueous solution is very low, buffer pH 7.4 can be employed to create solution gel. The IPM membrane will integrate the produced gel [23-26].

5. By Using EVAC Membranes Method: 1% carbopol reservoir gel, polyethylene (PE), and ethylene vinyl acetate (EVAC) membranes can be employed as rate control membranes to prepare the target transdermal treatment system. Propylene glycol is used to make gel when the medication is not soluble in water. Propylene glycol is used to dissolve the drug; carbopol resin will then be added to the solution and neutralised using a 5% w/w sodium hydrosulphate solution. A sheet of backing layer covering the designated area is placed on top of the medicine (in gel form). To create a leak-proof device, a rate-regulating membrane will be applied over the gel, and the edges will be heated to seal them [27-28].

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Drug Name</th>
<th>Manufacturer</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotine IIR</td>
<td>Nicotine</td>
<td>Novartis</td>
<td>Smoking cessation</td>
</tr>
<tr>
<td>Matrifener</td>
<td>Fentanyl</td>
<td>Nycamed</td>
<td>Pain Relief patch</td>
</tr>
<tr>
<td>NuPatch 100</td>
<td>Diclofenac</td>
<td>Zydus Cadila</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td>Alora</td>
<td>Estradiol</td>
<td>TheraTech, Proctol</td>
<td>Postmenstrual syndrome</td>
</tr>
<tr>
<td>Nuvelle TS</td>
<td>Estrogen, Progestrone</td>
<td>Ethical holdings</td>
<td>Hormone Replacement</td>
</tr>
<tr>
<td>Nittrodine</td>
<td>Nitroglycerine</td>
<td>Roberts p’seuticals</td>
<td>Angina Pectoris</td>
</tr>
<tr>
<td>Estraderm</td>
<td>Estradiol</td>
<td>Alza/Norvatis</td>
<td>Postmenstrual syndrome</td>
</tr>
</tbody>
</table>

Conclusion
The prediction shows that TDDS has the potential to be both hydrophobic and hydrophilic. The delivery system to optimize this drug is the mechanism of more social biological interaction of the various and essential polymers. Drugs showing metabolic and unstable status in the first state are suitable candidates for transdermal drug delivery systems. Many
new researches are going on at the present time to incorporate new drugs through this system.

Acknowledgements
We are thankful for the management of the institute to provide different facilities for this work.

References
