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Abstract   

A few consolidated methods of data mining 

approaches developed by ourselves are proposed in 

the modern framework of geoinformatic remote 

sensing. These approaches and combinations of them, 

be it partially or fully, helps in extracting knowledge 

from huge data sets especially as in geo-informatics. 

These methods of data mining are quite useful in 

depicting trends and patterns associated with huge 

amount of partially correlated data generated at  

 

 

various stations and classifying them based on 

different variables associated with the process which 

can also be in a non-linear fashion. These methods 

are successfully applied individually in various 

contexts. We suggest that combinations of these 

approaches when worked upon yield an effective 

classification of data even in the complicated and 

distributed field of geo-informatics. 
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1. Introduction 

The initiative Global Monitoring of Environment and 

Security (GMES) jointly set up by European Union (EU) 

and European Space Agency, under the EU directive 

Infrastructure for Spatial Information in Europe 

(INSIPRE) has been one of the stimulating 

international projects putting together geoscientists  

with different expertise in order to joint effort in 

sharing detection tools, locations, methods and co-

workers, to make a quality jump in the sector. 

In particular, given the opportunity to have many data 

on several possible locations, one of the typical goals 

one has in mind is to classify records on the basis of a 

hopefully reduced meaningful subset of the measured 

variables. 

The complexity of the problem makes it worthwhile to 

resort to automatic classification procedures.  

Then, the questions do arise of reconstructing a 
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synthetic mathematical model, capturing the most 

important relations between variables. Such 

interrelated aspects will be the focus of the present 

contribution. Four main general purpose approaches, 

also useful in the geo-informatics context, will be 

briefly discussed in the present chapter, underlying 

cost effectiveness of each one. 

In order to reduce the dimensionality of the problem, 

thus simplifying both the computation and the 

subsequent understanding of the solution, the critical 

problems of selecting the most salient variables must 

be solved.  

A very simple approach is to resort to cascading a 

Divisive Partitioning of data orthogonal to the Principal 

Directions – PDDP – [1] already proven to be 

successful in contexts different for applications, like 

analyzing the logs of an important telecom provider 

[2] or identifying the salient genes discriminating 

Leukemia in micro-array samples [3]. 

A more sophisticated possible approach is to resort to 

a rule induction method, like the one described in 

Muselli and Liberati [4]. Such a strategy also offers 

the advantage to extract underlying rules, implying 

conjunctions and/or disjunctions between the 

identified salient variables. Thus, a first idea of their 

even non-linear relations is provided as a first step to 

design a representative model, whose variables will be 

the selected ones. Such an approach has been shown 

[5] to be not less powerful over several benchmarks 

than the popular decision tree developed by Quinlan 

[6]. 

An alternative in this sense can be represented by 

Adaptive Bayesian Networks [7] whose advantage is 

also to be available on a commercial wide spread data 

base tool like Oracle (www.oracle.com). A possible 

approach to blindly build a simple linear approximating 

model is to resort to piece-wise affine (PWA) 

identification [8]. 

The joint use of (some of) such four approaches, 

briefly described in the present contribution, starting 

from data without known priors about their 

relationships, will thus allows to reduce dimensionality 

without significant loss in information, then to infer 

logical relationships, and, finally, to identify a simple 

input-output model of the involved process that also 

could be used for controlling purposes even in a 

complex field like geo-informatics. 

The possibility to resort to such services in a 

distributed way, when not all of them are available at 

the geoscientist nor at the same place anyway, thus 

sharing not only data collected at different places in 

different modalities, but also complementary expertise 

in different approaches, do lead to a cooperative 

enterprise in the growing paradigm of e-Science [9]. 

1.1. Background 

The introduced tasks of selecting salient variables, 

identifying their relationships from data and classifying 

possible intruders may be sequentially accomplished 

with various degrees of success in a variety of ways.  

Principal components order the variables from the 

most salient to the least one, but only under a linear 

framework.  

Partial least squares do allow extending to non-linear 

models, provided that one has prior information on 

the structure of the involved non-linearity; in fact, the 

regression equation needs to be written before 

identifying its parameters. Clustering may operate 

even in an unsupervised way without the a priori 

correct classification of a training set [1].  

Neural networks are known to learn the embedded 

rules with the indirect possibility [10] to make rules 

explicit or to underline the salient variables.  
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Decision trees [6] are a popular framework providing 

a satisfactory answer to the recalled needs. 

2. Experimental 

2.1. Salient Variable Selection 

A learning strategy that looks for a trade-off between 

a high predictive accuracy of the classifier and a low 

cardinality of the selected variable subset may be 

derived according to the central hypothesis that a 

good variable subset contains variables that are highly 

correlated with the class to be predicted, yet 

uncorrelated with each other. 

Based on information theory, the Minimum Description 

Length (MDL) principle [11] states that the best 

theory to infer from training data is the one that 

jointly minimizes the length (i.e. the complexity) of 

the theory itself and the length of the data encoded 

with respect to it. Thus, MDL can be employed as a 

criterion to judge the quality of a classification model, 

by finding a compact encoding of the training data 

[12]. As described in [13], each feature can be ranked 

according to its description length that reflects the 

strength of its correlation with the target. In this 

context, the MDL measure is again given by weighting 

the encoding length with the number of bits needed to 

describe the data [7]. 

Once all variables have been ordered by rank, no a 

priori criterion is available to choose the cut-off point 

beyond which variables can be discarded. One can 

thus start by building a classifier on the set of the n-

top ranked features via one of the following 

approaches. Then, a new feature is sequentially added 

to this set, and a new classifier is built, until no 

improvement in accuracy is achieved. 

2.2. Unsupervised Clustering 

The approach taken herein may be summarized in the 

following three steps, the second of which is the core 

of the method, while the first one constitutes a pre-

processing phase useful to ease the following task, 

and the third one is a post-processing step designed 

to focus back on the original variables. Then: 

1. A Principal Component Analysis (PCA) [14-15] 

defines a hierarchy in the transformed orthogonal 

variables according the principal directions of the data 

set. It is a multivariate analysis designed to select the 

linear combinations of variables with higher inter-

subject co-variances; such combinations are the most 

useful for classification. More precisely, PCA returns a 

new set of orthogonal coordinates of the data space, 

where such coordinates are ordered in decreasing 

order of inter-subject covariance. 

2. The unsupervised clustering is performed by 

cascading a non-iterative technique-the Principal 

Direction Divisive Partitioning (PDDP) [1] based upon 

singular value decomposition [16] and the iterative 

centroid-based divisive algorithm k-means [17]. Such 

a cascade, with the clusters obtained via PDDP used 

to initialize k-means centroids, is shown to achieve 

best performances in terms of both quality of the 

partition and computational effort [18]. The whole 

dataset is thus bisected into two clusters, with the 

objective of maximizing the distance between the two 

clusters and, at the same time, minimizing the 

distance among the data points lying in the same 

clusters. The classification is achieved without using a 

priori information (unsupervised learning) thus 

automatically highlighting data belonging to a 

(possibly unknown) class.  

3. By analyzing the obtained results, the number of 

variables needed for the clustering may be reduced, 

by pruning all the original variables that are not 

needed in order to define the final partitioning hyper-

plane, so that the classification eventually is based on 

a few variables only. 
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Binary rule inference and variable selection while 

mining data via logical networks 

Recently, an approach has been suggested-Hamming 

Clustering-related to the classical theory exploited in 

minimizing the size of electronic circuits, with the 

additional care to obtain a final function able to 

generalize from the training dataset to the most likely 

framework describing the actual properties of the 

data. In fact, the Hamming metric tends to cluster 

samples whose code is less distant; this is likely to be 

natural, if variables are redundantly coded via 

thermometer (for numeric variables) or only-one (for 

logical variables) code [4]. 

The approach followed by Hamming clustering in 

mining the available data to select the salient 

variables and to build the desired set of rules consists 

of the three following steps: 

Step 1: A critical issue is the partition of a possibly 

continuous range in intervals, whose number and 

limits may affect the final result. The thermometer 

code may be used to preserve ordering and distance 

(in case of nominal input variables, for which a natural 

ordering cannot be defined; the only-one code may 

instead be adopted). The simple metric used is the 

Hamming distance, computed as the number of 

different bits between binary strings. In this way, the 

training process does not require floating point 

computation but only basic logic operations. This is 

one reason for the algorithm speed and for its 

insensitivity to precision. 

Step 2: To generalize and infer the underlying rules 

during the logical synthesis designed to obtain the 

simplest AND-OR expression able to satisfy all the 

available input-output pairs, at every iteration 

Hamming clustering groups together in a competitive 

way binary strings having the same output and close 

to each other. A final pruning phase does simplify the 

resulting expression, further improving its 

generalization ability. The minimization of the involved 

variables intrinsically excludes the redundant ones, 

thus enhancing the very salient variables for the 

investigated problem. The low (quadratic) 

computational cost allows managing quite large 

datasets. 

Step 3: Each logical product directly provides an 

intelligible rule, synthesizing a relevant aspect of the 

searched underlying system that is believed to 

generate the available samples [5]. 

2.3. Adaptive Bayesian Networks 

Naïve Bayes (NB) is a very simple Bayesian network 

consisting of a special node (the target class) that is 

parent of all other nodes (the variables) that are 

assumed to be conditionally independent, given the 

value of the class. The NB network can be 

supervisedly quantified against a training dataset of 

pre-classified instances, by computing the probability 

associated to a specific value of each variable, given 

the value of the class label. Then, any new instance 

can be easily classified making use of the Bayes rule. 

Despite its strong independence assumption is clearly 

unrealistic in several application domains; NB has 

been shown to be competitive with more complex 

state-of-the-art classifiers [12, 19-20]. 

In order to relax NB full independence assumption, 

correlation arcs are added between the variables of a 

NB classifier, still imposing specific structural 

constraints [12, 19] in order to maintain 

computational simplicity on learning. The Adaptive 

Bayesian Network (ABN) algorithm [7], is a greedy 

variant, based on MDL, of the approach proposed in 

[19]: the network is initialized to NB on the top k 

ranked variables according to their MDL relevance. 

Next, the algorithm attempts to extend NB by 

constructing a set of tree over multi-dimensional 



UPI Journal of Engineering and Technology 2018; 1(1): 1-7  

 

 

5 

variables. Interestingly, each multi-dimensional 

feature can be expressed in terms of a set of if-then 

rules enabling users to easily understand the basis of 

model predictions 

2.4. Piece-wise Affine Identification  

Once the salient variables have been selected, it may 

be of interest to capture a model of their dynamical 

interaction. A first hypothesis of linearity may be 

investigated, usually being only a very rough 

approximation, when the values of the variables are 

not close to the functioning point around which the 

linear approximations computed. 

On the other hand, to build a non-linear model is far 

from easy; the structure of the non-linearity needs to 

be a priori known, which is not usually the case. A 

typical approach consists of exploiting a priori 

knowledge, when available, to define a tentative 

structure, then refining and modifying it on the 

training subset of data, and finally retaining the 

structure that best fits a cross-validation on the 

testing subset of data. The problem is even more 

complex when the collected data exhibit hybrid 

dynamics (i.e., their evolution in time is a sequence of 

smooth behaviours and abrupt changes). 

An alternative approach is to infer the model directly 

from the data without a priori knowledge via an 

identification algorithm capable of reconstructing a 

very general class of piece-wise affine model [8]. This 

method also can be exploited for the data driven 

modelling of hybrid dynamical systems, where logic 

phenomena interact with the evolution of continuous-

valued variables. Such approach will be described 

concisely in the following 

Piece-wise affine identification exploits k-means 

clustering that associates data points in multivariable 

space in such a way to jointly determine a sequence 

of linear sub-models and their respective regions of 

operation without even imposing continuity at each 

change in the derivative. In order to obtain such a 

result, the five following steps are executed: 

Step 1: The model is locally linear; small sets of data 

points close to each other likely belong to the same 

sub-model. For each data point, a local set is built, 

collecting the selected points together with a given 

number of its neighbours (whose cardinality is one of 

the parameters of the algorithm). Each local set will 

be pure if made of points really belonging to the same 

single linear subsystem; otherwise, it is mixed. 

Step 2: For each local dataset, a linear model is 

identified through usual least squares procedure. Pure 

sets belonging to the same sub-model give similar 

parameter sets, while mixed sets yield isolated 

vectors of coefficients, looking as outliers in the 

parameter space. If the signal to noise ratio is good 

enough, and if there are not too many mixed sets 

(i.e., the number of data points is enough more than 

the number of sub-models to be identified, and the 

sampling is fair in every region), then the vectors will 

cluster in the parameter space around the values 

pertaining to each sub-model, apart from a few 

outliers. 

Step 3: A modified version of the classical K-means, 

whose convergence is guaranteed in a finite number 

of steps [8], takes into account the confidence on 

pure and mixed local sets in order to cluster the 

parameter vectors. 

Step 4: Data points are then classified, each being a 

local dataset one-to-one related to its generating data 

point, which thus is classified according to the cluster 

to which its parameter vector belongs. 

Step 5: Both the linear sub-models and their regions 

are estimated from the data in each subset. The 

coefficients are estimated via weighted least squares, 

taking into account the confidence measures. The 
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shape of the polyhedral region characterizing the 

domain of each model may be obtained via linear 

support vector machines [21], easily solved via 

linear/quadratic programming. 

3. Future Trends 

The proposed approaches are now under application 

in several contexts. The fact that a combination of 

different approaches, taken from partially 

complementary disciplines, proves to be effective may 

indicate a fruitful direction in combining in different 

ways classical and new approaches to improve 

classification even in the complex and often 

distributed field of geo-informatics. 

4. Conclusion  

The proposed approaches are very powerful tools for 

quite a wide spectrum of applications in and beyond 

data mining, providing an up-to-date answer to the 

quest of formally extracting knowledge from data and 

sketching a model of the underlying process. 

In geo-informatics such tools may be quite useful in 

order to complement other approaches in processing 

the huge amount of partially correlated data made 

available at various stations with complementary 

sensors, and classifying them on the basis of their 

identified even non linear profile. 
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8. Key Terms and Their Definitions 

8.1. Hamming Clustering: A fast binary rule 

generator and variable selector are able to build 

understandable logical expressions by analyzing the 

Hamming distance between samples. 

Hybrid Systems: Their evolution in time is composed 

by both smooth dynamics and sudden jumps. 

8.2. k-means: Iterative clustering technique 

subdividing the data in such a way to maximize the 

distance among centroids of different clusters, while 

minimizing the distance among data within each 

cluster. It is sensitive to initialization. 

Model Identification: Definition of the structure and 

computation of its parameters best suited to 

mathematically describe the process underlying the 

data. 

8.3. PDDP (Principal Direction Divisive 

Partitioning): One-shot clustering technique based 

on principal component analysis and singular value 

decomposition of the data, thus partitioning the 

dataset according to the direction of maximum 

variance of the data. It is used here in order to 

initialize K-means. 

8.4. Principal Component Analysis: 

Rearrangement of the data matrix in new orthogonal 

transformed variables ordered in decreasing order of 

variance. 

Rule Inference: The extraction from the data of the 

embedded synthetic logical description of their 

relationships. 

8.5. Salient Variables: The real players among the 

many apparently involved in the true core of a 

complex business. 

8.6. Singular Value Decomposition: Algorithm 

able to compute the eigenvalues and eigenvectors of a 

matrix; also used to make principal components 

analysis. 

8.7. Unsupervised Clustering: Automatic 

classification of a dataset in two of more subsets on 

the basis of the intrinsic properties of the data without 

taking into account further contextual information.

 


